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M. Vlad,1 F. Spineanu,1 J. H. Misguich,2 and R. Balescu3
1Association Euratom-MER, National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG-36, Magurele, Bucharest, R

2Association Euratom-CEA sur la Fusion, CEA/DSM/DRFC, CEA-Cadarache, F-13108 Saint-Paul-lez-Durance, France
3Association Euratom-Etat Belge sur la Fusion, Universite´ Libre de Bruxelles, CP 231, Campus Plaine, Boulevard du Triomphe,

1050 Bruxelles, Belgium
~Received 30 May 2002; published 18 September 2002!

We agree with the results presented in the previous Comment@Phys. Rev. E66, 038301~2002!# concerning
the equality, at any time moment, of the average Lagrangian and Eulerian velocities in two-dimensional
incompressible stochastic velocity fields. We show that this statistical invariance is the effect of a complex
nonlinear process that determines particle trapping and a compensatory acceleration of the nontrapped par-
ticles. We discuss the possibility of developing the decorrelation trajectory method which is able to describe the
process of trapping but not the statistical acceleration.
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We studied the effect of a constant average drift on p
ticle diffusion in two-dimensional divergence-free stochas
velocity fields in Ref.@1#. This is essentially an analytica
evaluation of the average and of the correlation of the
grangian velocity for a given Eulerian correlation of the p
tential ~stream function!. It is based on the decorrelation tra
jectory method ~DTM!, an approach we have recent
developed@2#.

In the preceding Comment@3# our result in Ref.@1# con-
cerning the average Lagrangian velocityVL is contested.
Namely, we obtained a time-dependent average Lagran
velocity VL(t) that evolved from the Eulerian valueVd to a
smaller asymptotic value, while the Comment@3# claims the
invariance of this quantity,VL(t)5Vd . The arguments in
Ref. @3# are based on a theorem by Lumley which is co
firmed by performing a numerical simulation of the stoch
tic trajectories.

In the first part of this Reply we analyze the physic
system considered in the numerical simulation in Ref.@3#
and since it appears to be rather different from the cases
have studied until now we apply the DTM to this syste
The result concerning the average Lagrangian velocity
however, qualitatively similar to that obtained in Ref.@1#.
This confirms the observation in Ref.@3# that the DTM does
not provide accurate results for the average Lagrangian
locity. In the second part of our Reply we present a sh
analysis of the methods for studying tracer transport in s
chastic velocity fields and comment on the physical sign
cance of their basic approximations. The numerical simu
tion presented in the Comment@3# suggested to us th
existence of a rather complex physical mechanism which
termines the invariance of the average Lagrangian velo
We show that none of the existing methods is able to
scribe this process although some of them obtainVL(t)
5Vd and discuss the possibility of developing the DTM.

Results of the DTM for the stochastic field considered
in Ref. †3‡

The velocity field considered in the numerical calculati
in Ref. @3# is
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r-
c

-
-

an

-
-

l

e
.
s,

e-
rt
-

-
-

e-
y.
-

v~x!5
1

AN
(
n51

N

@zn cos~kn•x…1yn sin~kn•x…#, ~1!

where

zn5an2
an•kn

kn•kn
kn , yn5bn2

bn•kn

kn•kn
kn ,

such that“•v50. The vectorskn , an , andbn are indepen-
dent stochastic variables with Gaussian distribution, zero
erage, and unit variance. The Eulerian correlations of
velocity componentsEi j (r )[^v i(x)v j (x1r )& are obtained
by averaging overan , bn , and kn , n51,N. Introducing a
potential ~or stream function! f(x) which determines the
velocity as v(x)5(]/]x2 ,2]/]x1)f(x), it can be shown
that the Eulerian correlation of the potentialE(r )
5^f(x)f(x1r )& is determined as

E~r !5
1

2pE d2k
1

k2
expS 2

k2

2 D cos~k•r ! , ~2!

and after performing the integral over the angle one obta

E~r !5E
0

`

dk
1

k
expS 2

k2

2 D J0~kr !, ~3!

wherer 5ur u andJ0 is the Bessel function of the first kind
Thus the spectrum of the potential defined as the Fou
transform of the Eulerian correlation can be identified in E
~2! as S(k)5exp(2k2/2)/k2. This spectrum is divergent in
k50 which means that the terms with infinite wavelengt
dominate. They correspond to open contour lines of the
tential. A typical realization of the potentialf(x) has aniso-
tropic shape with open contour lines that form a ‘‘boulevar
along some direction. The integral in Eq.~3! is divergent for
any value ofr which shows that the Eulerian correlation
the potential is not defined. However, the Eulerian corre
tions of the velocity componentsEi j (d) are well defined.
They can be calculated fromE(r ) as
©2002 The American Physical Society02-1
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E11~x!52
E8~r !

r

x1
2

r 2
2E9~r !

x2
2

r 2
,

E22~x!52
E8~r !

r

x2
2

r 2
2E9~r !

x1
2

r 2
,

E12~x!5
x1x2

r 2 S E9~r !2
E8~r !

r D ,

and thus they are not functions ofE(r ) but only of its first
and second derivativesE8(r ) andE9(r ). These functions are
well defined for all values ofr and can be written as

E8~r !52
1

r F12expS 2
r 2

2 D G , ~4!

E9~r !5
1

r 2 F12expS 2
r 2

2 D G2expS 2
r 2

2 D . ~5!

They are finite inr 50 and decay to zero whenr→`.
The DTM is based on the invariance of the Lagrang

potential and it needs the knowledge of the Eulerian corr
tion E(r ). Since the potential is defined up to a consta
arbitrary values can be extracted from the potential and c
sequently from its Eulerian correlation. In the case of Eq.~3!
an infinite constant has to be considered. Indeed, the Eule
correlation~3! can become finite through this procedure b
cause its derivative with respect tor is convergent. We
choose for the constantE(0) and the ‘‘regularized’’ Eulerian
correlation of the potential is

E~r !5E~r !2E~0!5E
0

`

dk

expS 2
k2

2 D
k

@J0~kr !21# , ~6!

which is a well defined function ofr. It is negative for all
values ofr, it can be approximated byE(r )>2r for r !1
and it goes to2` for larger asE(r )>2 ln(r). This potential
defines a long-range correlated velocity field as studied
Ref. @4#. Actually it is just at the boundary between long- a
short-range velocity fields.

The velocity fields we have considered in Ref.@1# are of
short-range type, with Eulerian correlation that are finite
r 50 and decay to zero at larger. Consequently, the Euleria
velocity correlation̂ v(x)•v(x1r )&52@E8(r )/r 2E9(r )# is
always negative at larger since its integral from zero tò is
zero. This shows the change of the direction of the veloc
which is related to trajectory trapping. The correspond
correlation in Ref.@3#, Eq. ~6!, is always positive which sug
gests@together with the boulevards observed in the cont
plots of f(x)# the possibility that the trapping is not gener
for this potential.

It is thus interesting to apply the DTM to this potenti
and to compare the results obtained by the analytical me
presented in Ref.@1# with the numerical simulations in Ref
@3#. The results we have obtained are similar to those for
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short-range stochastic potential, which are presented in
Fig. 2~a! in Ref. @1#. The differences are only quantitativ
and they show that indeed the trapping is weaker for t
potential: the diffusion coefficient acrossVd decays slower
with time, the trapping regime appears at later times. In p
ticular, the average Lagrangian velocity decays to a va
which is sensibly smaller than the Eulerian average velo
as in Fig. 2~a! in Ref. @1#.

In conclusion, an important qualitative difference appe
in the results obtained in@1# and @3# which shows that the
DTM does not provide accurate results for the average
grangian velocity.

Analysis of the main methods

In order to understand the source of this difference
present a short analysis of the approximations involved in
main methods used for determining the statistical proper
of tracer motion described by the nonlinear Langevin eq
tion dx/dt5v(x). The basic problem consists in the eval
ation of the Lagrangian velocity correlation, i.e., in the es
mation of the following average of a stochastic function o
stochastic argument:

^v~0!v„x~ t !…&5E dy^v~0!v~y!d@y2x~ t !#&. ~7!

The usual procedure is the Corrsin approximation@5#. It is
based on the assumptions that the trajectories have a G
ian distributionPG(y,t), and it neglects the correlation be
tween the trajectories and the velocities. The average in
~7! is cut in two factors ^v(0)v(y)& and ^d„y2x(t)…&
5PG(y,t). One obtains a diffusive transport of Bohm typ
@6# with the diffusion coefficientD;Vlc , whereV is the
amplitude of the velocity andlc is its correlation length.

This is a correct result if the equation of motion would n
create correlations between trajectories and the velocity fi
Otherwise, the Lagrangian velocity correlations generated
the motion appear as trajectory trapping in the posit
and/or velocity space. The trajectories are confined in limi
regions of position and/or velocity space where the veloc
field is correlated and thus long-time Lagrangian correlatio
appear. Consequently the distribution of the displaceme
and/or the distribution of the Lagrangian velocity are d
torted and have a non-Gaussian shape. We claim that tra
tory trapping and the generation of long-time Lagrang
correlations are essentially determined by the existence
invariants of the motion.

In the case considered here~two-dimensional incompress
ible homogeneous static velocity fields! a spatial trapping
appears which is related to the invariance of the poten
f„x(t)… along the trajectory. The particles remain on the co
tour lines off(x) and perform a periodic motion. In conse
quence the transport is subdiffusive: the mean square
placement grows in time slower than linearly and the runn
diffusion coefficient decays to zero. The increase of the m
square displacement is determined at larget by the particles
that are not yet trapped@they move on large size contou
lines of f(x) and have not performed a complete turn#. The
2-2
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spatial trapping is reflected in the distribution of the displa
ments which appears to be non-Gaussian@7#. The central
limit theorem does not apply here because the elemen
displacementsdx5vdt are not statistically independent. A
far as the Lagrangian velocities are concerned, they have
same Gaussian distribution as the Eulerian velocities,
cause there is no trapping in velocity space.

The Corrsin approximation~as well as the improved ver
sions! yields a diffusive transport of Bohm type and thus
not at all correct in this case. Actually this method negle
the trapping process because it relies on an assumed G
ian distribution of the trajectories. We note that it is possi
to improve the Corrsin approximation by eliminating the fa
torization of the average in Eq.~7! since it is possible to
calculate this average exactly within the hypothesis
Gaussian distribution of displacements. However, this d
not qualitatively change the results: a Bohm type diffus
transport is obtained which indirectly confirms the idea t
the trajectories have a non-Gaussian distribution.

The DTM was developed having in mind the idea
maintaining the condition of invariance of the Lagrangi
potential through the approximation that has to be int
duced. The trajectory trapping process and subdiffusive
gimes could so be obtained. To this aim, the space of r
izations of the stochastic potential was divided in
subensembles~S! defined by given values of the potenti
and of the velocity inx50, the starting point of the trajec
tories. In each subensemble, there are nonzero average
ues of the potential and of the velocitŷf(x)&S5FS(x),
^v(x)&S5VS(x), which are space-dependent functions de
mined by the Eulerian correlation of the potential. The d
tribution function in~S! for each one of these two quantitie
is a d function in x50 ~it is a deterministic variable in this
point! and atxÞ0 the distribution becomes Gaussian with
x-dependent average and dispersion. Asx increases from
zero to infinity, the average value decreases from the va
that labels the subensemble to zero, and the dispersion
creases from zero up to the value corresponding to the w
statistical ensemble. The DTM is based on the followi
approximation concerning the average Lagrangian velo
in the subensemble:

^v@x~ t !#&S>^v@^x~ t !&S#&S5VS
„^x~ t !&S…. ~8!

Thus the average Lagrangian velocity in the subensemble~S!
is approximated by the average Eulerian velocity along
average trajectorŷx(t)&S in (S). This means that the fluc
tuations of the trajectories around the average trajector
~S! are neglected. This approximation is better in sub
sembles than it could be if applied in the whole set of re
izations where it would be rather rough. This is due to
fact that the fluctuations of the trajectories are smaller in~S!
than in the whole set of realizations. They are determined
the fluctuations of the velocity and, in the subensemble,
latter are zero in the starting point of the trajectory and
come important only when the trajectory reaches la
enough distances. As seen in Ref.@2# this approximation
leads to a periodic average trajectory in (S). Actually, the
average trajectory in~S! is a nonperiodic oscillating function
03830
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of time that decays slowly to zero~since it is the average o
periodic functions with periods distributed around some
erage value!. The running diffusion coefficientD(t) is rep-
resented in Ref.@2# as a weighted sum over the sube
sembles of the average displacement. The trapped part
do not contribute toD(t) at large times because their avera
displacement decays to zero. A similar effect is produced
the approximate average trajectories obtained by the D
using Eq.~8!: due to an incoherent mixing of these period
functions in the sum over the subensembles the contribu
of the trapped particles is negligible inD(t) at larget. Thus
the DTM provides a description of the trajectory trappi
and it is the first method which has obtained a subdiffus
tracer transport in such stochastic potentials, withD(t) de-
caying algebraically to zero. A detailed study of the accura
of this method is in progress. This qualitatively correct res
is essentially due to the fact that the DTM approximation~8!
preserves the invariance of the potential: the average
grangian potential is invariant in any subensemble (S). The
Corrsin approximation has not this property and con
quently it fails in describing the trapping and the subdiff
sive transport.

The above physical picture becomes more complicate
the presence of a small average driftVd . It determines an
invariant average Lagrangian velocity~equal toVd) but, as
the numerical simulation in the Comment@3# suggested to
us, the latter is induced by a rather nontrivial mechanis
Figure 2 in Ref.@3# shows that about half of the trajectorie
are trapped: they determine the peak inx50 and do not
contribute to the average displacement and velocity. T
other part of trajectories performs an average motion with
average velocity which is about two times larger thanVd
such that it compensates exactly the trapping and gives
average Lagrangian velocity equal to the Eulerian one.
general, the average Lagrangian velocity appears to beVL

5nf(t)V8 wherenf is the fraction of nontrapped trajectorie
and V8 is their average velocity. Sincenf(t) is a time-
dependent function@nf(0)51 and, at large time, it decay
asymptotically to a smaller valuenf a,1#, the average veloc-
ity V8 is also time dependent and increases according
V8(t)5Vd /nf(t) such to ensure the equality of the Lagran
ian and Eulerian averagesVL(t)5Vd at any time. Thus, as
time increases the number of non-trapped particles decre
but their average velocity increases such that the ave
Lagrangian velocity is invariant. A statistical acceleration a
pears which increases the average Lagrangian velocity o
nontrapped particles fromVd to Vd /nf a .

Corrsin approximation gives correct results for the dis
bution of the Lagrangain velocityP(v,t)5^d(v2v„x(t)…)&.
One can write this probability as

P~v,t !5E dy^d@v2v~y!#d@y2x~ t !#& , ~9!

and with the hypothesis of statistical independence of tra
tories and velocities which allow the factorization of the a
erage, this equation gives the Eulerian distribution at ant,
P(v,t)5PG(v)5^d„v2v(y)…&. In particular, the average
Lagrangian velocity equals the Eulerian avera
2-3
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VL(t)5Vd . But this result appears as a trivial consequen
~almost postulated! of the approximation involved in this
method and does not contained the above rather subtle e
revealed by the numerical simulation in Ref.@3#.

The decorrelation trajectory method determines
asymptotic average Lagrangian velocity asVL5nf(t)Vd
,Vd . Only the nontrapped particles contribute to the av
age Lagrangian velocity and they have an average velo
equal to the Eulerian one. The approximation~8! leads to this
result for any stochastic velocity field with Eulerian corre
tions that decay to zero at large distances sinceVS(x)→Vd at
x@1. Thus the DTM describes the trajectory trapping b
does not yield the statistical acceleration observed in R
@3#. This is a consequence of neglecting the fluctuations
the trajectories in (S). They should determine a suppleme
tary term on the right-hand side of Eq.~8!. The fluctuations
of the trajectories are determined by the fluctuations of
velocity in ~S! and as the correlation of the latter increas
with the distance it is expected that the correction so in
duced in Eq.~8! should not decay to zero for the avera
trajectories that escape tò and should contribute to th
asymptotic average velocity yielding a valueV8.Vd , as ob-
tained in Ref.@3#. Thus the acceleration of the nontrapp
particles should be a nonlinear effect determined by the fl
tuations of the trajectories in (S).

One possibility of taking into account the fluctuations
the trajectories in~S! is to use a Corrsin approximation i
each subensemble. This amounts to replacing Eq.~8!, the
basic approximation of the DTM, by

^v„x~ t !…&S>E dy•VS~y!PG„y2^x~ t !&S…. ~10!

It appears as an improved approximation since Eq.~8! can be
obtained from Eq.~10! by neglecting the fluctuations of th
trajectories in (S), i.e., by puttingd@y2^x(t)&S# instead of
the Gaussian distributionPG@y2^x(t)&S#. We have shown
that this approximation determines an asymptotic aver
Lagrangian velocity equal toVd , and thus seems to improv
ys

ys

03830
e

ect

e

-
ity

t
f.
f

e
s
-

c-

e

the result. But it does not give the image presented in R
@3#. The asymptotic valueVL(t)→Vd does not appear due t
the acceleration of the nontrapped particles but due to
asymptotic release of all trajectories that givesnf(t)→1.
Moreover the approximation~10! does not yield the subdif-
fusive behavior of the transport atVd50. The spreading of
the trajectories introduced in Eq.~10! actually eliminates
progressively the invariance of the Lagrangian potential a
thus the trapping of the trajectories. Consequently, a fin
asymptotic diffusion coefficient of Bohm type was obtain
for Vd50. Thus, the improved approximation~10! actually
spoils the DTM qualitatively correct results concerning t
correlation of the Lagrangian velocity. These calculations
termine more precisely the source of the nonlinear accel
tion of the nontrapped trajectories. It is actually produced
the correlation of the fluctuations of the trajectories in t
subensemble with the fluctuations of the potential, which
neglected in Eq.~10!.

The conclusion of this analysis is that the description
the average motion in a two-dimensional incompressible
locity field is an open problem that could not be described
the existing methods. The average Lagrangian velocity
known from general arguments~Lumley theorem!, which
show that it is equal to the Eulerian average velocityVd at
any time. However, as suggested by the numerical sim
tions in Ref.@3#, there is a rather complex nonlinear proce
that determines this statistical invariance. It implies trapp
particles and a nonlinear statistical acceleration induced
Vd . The Corrsin approximation eliminates the trapping p
cess and thus is not suitable for this problem. The DT
succeeds in describing trajectory trapping and the subdi
sive transport but not the nonlinear acceleration. It see
that the DTM could be developed to include this process
taking into account the fluctuations of the trajectories in
subensembles. We have shown that any attempt of deve
ing an analytical method for describing this kind of stocha
tic motion has to ensure the invariance of the Lagrang
potential.
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