PHYSICAL REVIEW E 66, 038302 (2002
Reply to “Comment on ‘Diffusion in biased turbulence’”

M. Vlad,! F. Spineand,J. H. Misguich? and R. Balesct
1Association Euratom-MER, National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG-36, Magurele, Bucharest, Romania
2Association Euratom-CEA sur la Fusion, CEA/DSM/DRFC, CEA-Cadarache, F-13108 Saint-Paul-lez-Durance, France
3Association Euratom-Etat Belge sur la Fusion, Univérsitere de Bruxelles, CP 231, Campus Plaine, Boulevard du Triomphe,
1050 Bruxelles, Belgium
(Received 30 May 2002; published 18 September 2002

We agree with the results presented in the previous ComfRényss. Rev. 56, 038301(2002] concerning
the equality, at any time moment, of the average Lagrangian and Eulerian velocities in two-dimensional
incompressible stochastic velocity fields. We show that this statistical invariance is the effect of a complex
nonlinear process that determines particle trapping and a compensatory acceleration of the nontrapped par-
ticles. We discuss the possibility of developing the decorrelation trajectory method which is able to describe the
process of trapping but not the statistical acceleration.
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We studied the effect of a constant average drift on par- N
ticle diffusion in two-dimensional divergence-free stochastic V(X)= —= E [z, cogk,- X)+ Y, sin(k,-x)], 1)
velocity fields in Ref.[1]. This is essentially an analytical \/— =
evaluation of the average and of the correlation of the La-
grangian velocity for a given Eulerian correlation of the po- where
tential (stream functioh It is based on the decorrelation tra-
jectory method (DTM), an approach we have recently , &k ‘ b by Ky
developed2]. n= T T K YnT T T
In the preceding Commen8] our result in Ref[1] con-
cerning the average Lagrangian veloch§ is contested. such thatV-v=0. The vectork,, a,, andb, are indepen-
Namely, we obtained a time-dependent average Lagrangiafent stochastic variables with Gaussian distribution, zero av-
velocity V(t) that evolved from the Eulerian valié; to a  erage, and unit variance. The Eulerian correlations of the
smaller asymptotic value, while the Commé¢8f claims the  velocity componentsE;;(r)=(v;(X)v;(x+r)) are obtained
invariance of this quantityV-(t)=Vy4. The arguments in by averaging over,, b,, andk,, n=1,N. Introducing a
Ref. [3] are based on a theorem by Lumley which is con-potential (or stream function ¢(x) which determines the
firmed by performing a numerical simulation of the stochas-velocity asv(x)=(d/dx,,— dldx1) $(x), it can be shown
tic trajectories. that the Eulerian correlation of the potentigE(r)
In the first part of this Reply we analyze the physical =(¢(x)p(x+r)) is determined as
system considered in the numerical simulation in R&f.
and since it appears to be rather different from the cases we k2
have studied until now we apply the DTM to this system. E(r)— — | d’k— exp{ - 3) cos(k-r), (2)
The result concerning the average Lagrangian velocity is,
however, qualitatively similar to that obtained in RéEL]. ] ) )
This confirms the observation in Ré8] that the DTM does and after performing the integral over the angle one obtains
not provide accurate results for the average Lagrangian ve- 5
locity. In the second part of our Reply we present a short E(r)=J’wdk£ex;< _ k_)J (kr) @)
analysis of the methods for studying tracer transport in sto- o K 270
chastic velocity fields and comment on the physical signifi-
cance of their basic approximations. The numerical simulawherer =|r| andJ, is the Bessel function of the first kind.
tion presented in the Commen8] suggested to us the Thus the spectrum of the potential defined as the Fourier
existence of a rather complex physical mechanism which detransform of the Eulerian correlation can be identified in Eq.
termines the invariance of the average Lagrangian velocity2) as S(k) =exp(—k?2)/k2. This spectrum is divergent in
We show that none of the existing methods is able to dek=0 which means that the terms with infinite wavelengths
scribe this process although some of them obtdl{t)  dominate. They correspond to open contour lines of the po-
=V4 and discuss the possibility of developing the DTM.  tential. A typical realization of the potentigl(x) has aniso-
tropic shape with open contour lines that form a “boulevard”
o , along some direction. The integral in E®) is divergent for
Results of the DTM for the stochastic field considered any value ofr which shows that the Eulerian correlation of
in Ref. [3] the potential is not defined. However, the Eulerian correla-
The velocity field considered in the numerical calculationtions of the velocity componentg;;(d) are well defined.
in Ref.[3] is They can be calculated frod(r) as

Kn,
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E'(r) X% x% short—range stochastic potgntial, which are presentgd i.n the
Ep(X)=— —_2_E"(r)_2' Fig. 2(@) in Ref. [1]. The differences are only quantitative
ror r and they show that indeed the trapping is weaker for this
potential: the diffusion coefficient acrod4, decays slower
E'(r) x% xf with time, the trapping regime appears at later times. In par-
EzoX)=— r r_z_ ! r)r_z' ticular, the average Lagrangian velocity decays to a value

which is sensibly smaller than the Eulerian average velocity
, as in Fig. Za) in Ref.[1].
Ep(X)= @( E(r)— E (r)) In conclusion, an important qualitative difference appears
12 2 r )’ in the results obtained ifil] and[3] which shows that the
DTM does not provide accurate results for the average La-
and thus they are not functions B{r) but only of its first — grangian velocity.
and second derivativds'(r) andE"(r). These functions are
well defined for all values of and can be written as

Analysis of the main methods

In order to understand the source of this difference we

' (4) present a short analysis of the approximations involved in the

main methods used for determining the statistical properties

F{ 2) of tracer motion described by the nonlinear Langevin equa-
—exg — —

E'(r)y=—

1 L r2
ex E

' . (5)  tion dx/dt=v(x). The basic problem consists in the evalu-

2 ation of the Lagrangian velocity correlation, i.e., in the esti-

T
E” ! 1 r2
(ry= 21 expg 5
S mation of the following average of a stochastic function of a
They are finite inr=0 and decay to zero whan— o, stochastic argument:

The DTM is based on the invariance of the Lagrangian
potential and it needs the knowledge of the Eulerian correla- B
tion E(r). Since the potential is defined up to a constant, (0 x(v))= | dy(w(Ou(y)dly=x®)]). (7
arbitrary values can be extracted from the potential and con-
sequently from its Eulerian correlation. In the case of Bj.

L . . The usual procedure is the Corrsin approximafih It is
an infinite constant has to be considered. Indeed, the Euleriggy oy o the assumptions that the trajectories have a Gauss-
correlation(3) can become finite through this procedure be-

cause its derivative with respect Tois convergent. We ian distributionP(y,t), and it neglects the correlation be-
; o tween the trajectories and the velocities. The average in Eq.
choose for the constaft(0) and the “regularized” Eulerian J 9 q

. . (7) is cut in two factors{v(0)v(y)) and (S(y—x(t)))
correlation of the potential is =Ps(y,t). One obtains a diffusive transport of Bohm type

K2 [6] with the diffusion coefficienD~V\., whereV is the
exp( - ?) amplitude of the velocity and. is its correlation length.
_ i This is a correct result if the equation of motion would not
E(r)=E(r)—E(0)= | dk—————[Jo(kr)—1], (6 . ) . L
(N=E(r)—E(©) fo k [o(kr)=1], (6 create correlations between trajectories and the velocity field.

Otherwise, the Lagrangian velocity correlations generated by
which is a well defined function of. It is negative for all the motion appear as trajectory trapping in the position
values ofr, it can be approximated bg(r)=—r for r<1  and/or velocity space. The trajectories are confined in limited
and it goes to- oo for larger as&(r)= —In(r). This potential  regions of position and/or velocity space where the velocity
defines a long-range correlated velocity field as studied irield is correlated and thus long-time Lagrangian correlations
Ref.[4]. Actually it is just at the boundary between long- and appear. Consequently the distribution of the displacements
short-range velocity fields. and/or the distribution of the Lagrangian velocity are dis-

The velocity fields we have considered in Reff] are of  torted and have a non-Gaussian shape. We claim that trajec-
short-range type, with Eulerian correlation that are finite intory trapping and the generation of long-time Lagrangian
r=0 and decay to zero at largeConsequently, the Eulerian correlations are essentially determined by the existence of
velocity correlationv(x) - v(x+r))=—[E’(r)/r—E"(r)] is  invariants of the motion.
always negative at largesince its integral from zero t® is In the case considered hegteso-dimensional incompress-
zero. This shows the change of the direction of the velocityible homogeneous static velocity fieJda spatial trapping
which is related to trajectory trapping. The correspondingappears which is related to the invariance of the potential
correlation in Ref[3], Eq. (6), is always positive which sug- ¢(x(t)) along the trajectory. The particles remain on the con-
gests[together with the boulevards observed in the contoutour lines of$(x) and perform a periodic motion. In conse-
plots of ¢(x) ] the possibility that the trapping is not generic quence the transport is subdiffusive: the mean square dis-
for this potential. placement grows in time slower than linearly and the running

It is thus interesting to apply the DTM to this potential diffusion coefficient decays to zero. The increase of the mean
and to compare the results obtained by the analytical methosquare displacement is determined at lardpg the particles
presented in Ref.1] with the numerical simulations in Ref. that are not yet trappefthey move on large size contour
[3]. The results we have obtained are similar to those for thdines of ¢(x) and have not performed a complete tLiffihe
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spatial trapping is reflected in the distribution of the displace-of time that decays slowly to zer@ince it is the average of
ments which appears to be non-Gausdigh The central periodic functions with periods distributed around some av-
limit theorem does not apply here because the elementamrage valug The running diffusion coefficienD(t) is rep-
displacementx=vét are not statistically independent. As resented in Ref[2] as a weighted sum over the suben-
far as the Lagrangian velocities are concerned, they have tteembles of the average displacement. The trapped particles
same Gaussian distribution as the Eulerian velocities, bedo not contribute td(t) at large times because their average
cause there is no trapping in velocity space. displacement decays to zero. A similar effect is produced by

The Corrsin approximatiofas well as the improved ver- the approximate average trajectories obtained by the DTM
siong yields a diffusive transport of Bohm type and thus is using Eq.(8): due to an incoherent mixing of these periodic
not at all correct in this case. Actually this method neglectsunctions in the sum over the subensembles the contribution
the trapping process because it relies on an assumed Gaus$-the trapped patrticles is negligible ix(t) at larget. Thus
ian distribution of the trajectories. We note that it is possiblethe DTM provides a description of the trajectory trapping
to improve the Corrsin approximation by eliminating the fac-and it is the first method which has obtained a subdiffusive
torization of the average in Ed7) since it is possible to tracer transport in such stochastic potentials, viift) de-
calculate this average exactly within the hypothesis ofcaying algebraically to zero. A detailed study of the accuracy
Gaussian distribution of displacements. However, this doesf this method is in progress. This qualitatively correct result
not qualitatively change the results: a Bohm type diffusiveis essentially due to the fact that the DTM approximatign
transport is obtained which indirectly confirms the idea thatpreserves the invariance of the potential: the average La-
the trajectories have a non-Gaussian distribution. grangian potential is invariant in any subensemi8g. (The

The DTM was developed having in mind the idea of Corrsin approximation has not this property and conse-
maintaining the condition of invariance of the Lagrangianquently it fails in describing the trapping and the subdiffu-
potential through the approximation that has to be introsive transport.
duced. The trajectory trapping process and subdiffusive re- The above physical picture becomes more complicated in
gimes could so be obtained. To this aim, the space of reathe presence of a small average diff. It determines an
izations of the stochastic potential was divided intoinvariant average Lagrangian velocitgqual toV,) but, as
subensemble$S) defined by given values of the potential the numerical simulation in the Commef&] suggested to
and of the velocity inrx=0, the starting point of the trajec- us, the latter is induced by a rather nontrivial mechanism.
tories. In each subensemble, there are nonzero average véigure 2 in Ref[3] shows that about half of the trajectories
ues of the potential and of the velocifyp(x))s=®5(x),  are trapped: they determine the peakxin0 and do not
(v(x))s=VS(x), which are space-dependent functions detercontribute to the average displacement and velocity. The
mined by the Eulerian correlation of the potential. The dis-other part of trajectories performs an average motion with an
tribution function in(S) for each one of these two quantities average velocity which is about two times larger thén
is a d function inx=0 (it is a deterministic variable in this such that it compensates exactly the trapping and gives an
point) and atx# 0 the distribution becomes Gaussian with anaverage Lagrangian velocity equal to the Eulerian one. In
x-dependent average and dispersion. Asncreases from general, the average Lagrangian velocity appears t&'be
zero to infinity, the average value decreases from the value-n;(t)V’ wheren; is the fraction of nontrapped trajectories
that labels the subensemble to zero, and the dispersion iand V' is their average velocity. Sinca(t) is a time-
creases from zero up to the value corresponding to the wholgependent functiofin{(0)=1 and, at large time, it decays
statistical ensemble. The DTM is based on the followingasymptotically to a smaller valug,<1], the average veloc-
approximation concerning the average Lagrangian velocityty V' is also time dependent and increases according to

in the subensemble: V' (t)=Vq4/n(t) such to ensure the equality of the Lagrang-
ian and Eulerian averagé#(t)=V, at any time. Thus, as
(VIX(D) D s= (V[ {x(1))s])s=VI(x(1))g). (8)  time increases the number of non-trapped particles decreases

but their average velocity increases such that the average
Thus the average Lagrangian velocity in the subensef@le Lagrangian velocity is invariant. A statistical acceleration ap-
is approximated by the average Eulerian velocity along thepears which increases the average Lagrangian velocity of the
average trajectoryx(t))s in (S). This means that the fluc- nontrapped particles froddy to Vy/n¢,.
tuations of the trajectories around the average trajectory in Corrsin approximation gives correct results for the distri-
(S are neglected. This approximation is better in subenbution of the Lagrangain velocit(v,t) =(5(v—v(x(t)))).
sembles than it could be if applied in the whole set of real-One can write this probability as
izations where it would be rather rough. This is due to the
fact that the fluctuations of the trajectories are smallgiSn
than in the whole set of realizations. They are determined by P(V't):J dy(Slv—v(y)1oly—x(®)1), ©)
the fluctuations of the velocity and, in the subensemble, the
latter are zero in the starting point of the trajectory and beand with the hypothesis of statistical independence of trajec-
come important only when the trajectory reaches largeories and velocities which allow the factorization of the av-
enough distances. As seen in RE2?] this approximation erage, this equation gives the Eulerian distribution at &any
leads to a periodic average trajectory i) ( Actually, the  P(v,t)=Pg(v)=(5(v—v(y))). In particular, the average
average trajectory ifS) is a nonperiodic oscillating function Lagrangian velocity equals the Eulerian average
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VL(t)=V4. But this result appears as a trivial consequencehe result. But it does not give the image presented in Ref.
(almost postulatedof the approximation involved in this [3]. The asymptotic valu¥*(t)— V4 does not appear due to
method and does not contained the above rather subtle effeggie acceleration of the nontrapped particles but due to the
revealed by the numerical simulation in RES]. asymptotic release of all trajectories that givegt)—1.

The decorrelation trajectory method determines thevioreover the approximatiofl0) does not yield the subdif-
asymptotic average Lagrangian velocity ®=n(t)Vq  fusive behavior of the transport ®,=0. The spreading of
<Vqg. Only the nontrapped particles contribute to the averthe trajectories introduced in Eq10) actually eliminates
age Lagrangian velocity and they have an average velocityogressively the invariance of the Lagrangian potential and
equal to the Eulerian one. The approximati8nleads to this 1,5 the trapping of the trajectories. Consequently, a finite
result for any stochastic velocity field with Eulerian correla- asymptotic diffusion coefficient of Bohm type was obtained
tions that decay to zero at Iarge distances smﬁ(e<)—>vq at  for V4=0. Thus, the improved approximati@hO) actually
x>1. Thus the DTM describes the trajectory trapping but poils the DTM qualitatively correct results concerning the

does not yield the statistical acceleration observed in Ref’ . : : .
[3]. This is a consequence of neglecting the fluctuations Oi‘:orrelanon of the Lagrangian velocity. These calculations de-

the trajectories in$). They should determine a supplemen- farmine more precisely th'e source Of. the nonlinear accelera-
tary term on the right-hand side of E). The fluctuations tion of the n_ontrapped trajectories. Itis actua_lly pr(_)dut?ed by
of the trajectories are determined by the fluctuations of thdhe correlation 9f the fluctuat!ons of the trajec_torles n the
velocity in (9 and as the correlation of the latter increasesSUPensemble with the fluctuations of the potential, which are
with the distance it is expected that the correction so introneglected in Eq(10. o o
duced in Eq.(8) should not decay to zero for the average The conclusm_n of this anal_y3|s is that .the descrlp.tlon of
trajectories that escape to and should contribute to the the_ average motion in a two-dimensional mcompress_lble ve-
asymptotic average velocity yielding a vakié>V,, as ob- locity fl_elql is an open problem that could not be_: descrlbe_d b_y
tained in Ref.[3]. Thus the acceleration of the nontrapped(N€ €xisting methods. The average Lagrangian velocity is
particles should be a nonlinear effect determined by the flucknown from general argumentd.umley theoreny which
tuations of the trajectories irgj. show. that it is equal to the Eulerian average veIpM{ya}t
One possibility of taking into account the fluctuations of 21y time. However, as suggested by the numerical simula-
the trajectories IS is to use a Corrsin approximation in tions in Ref.[3], there is a rather complex nonlinear process

each subensemble. This amounts to replacing (Bg.the that determines this statistical invariance. It implies trapped
basic approximation of the DTM, by particles and a nonlinear statistical acceleration induced by

V4. The Corrsin approximation eliminates the trapping pro-
s cess and thus is not suitable for this problem. The DTM
<V(X(t))>szf dy- V(y)Pely—(X(1))s). (10 succeeds in describing trajectory trapping and the subdiffu-
sive transport but not the nonlinear acceleration. It seems
It appears as an improved approximation since(Brgcan be  that the DTM could be developed to include this process by
obtained from Eq(10) by neglecting the fluctuations of the taking into account the fluctuations of the trajectories in the
trajectories in §), i.e., by puttingds[y—(x(t))s] instead of subensembles. We have shown that any attempt of develop-
the Gaussian distributioPg[y—(x(t))s]. We have shown ing an analytical method for describing this kind of stochas-
that this approximation determines an asymptotic averagéc motion has to ensure the invariance of the Lagrangian
Lagrangian velocity equal t¥,, and thus seems to improve potential.
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